Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6479 -
Telegram Group & Telegram Channel
🔥 Холивар: scikit-learn — мастодонт ML или пора переходить на что-то посвежее?

🎓 С одной стороны — стабильный и понятный scikit-learn:
• простота API,
• огромная документация,
• идеально подходит для обучения и базовых ML-пайплайнов.

💥 Но многие говорят: «Он уже не тянет продакшн»:
• нет GPU,
• нет удобной работы с пайплайнами в стиле TensorFlow/PyTorch,
• нет AutoML по умолчанию.

И начинают смотреть в сторону LightGBM, XGBoost, CatBoost, PyCaret, H2O, или даже Spark ML.

👀 А кто-то вообще считает, что Scikit-learn — это «велосипед прошлого десятилетия».

Делитесь своим стеком — кто чем пользуется в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/es/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Scikit-learn forever: надёжный, понятный, любимый
👍 — Уже давно перешёл на градиентный бустинг и AutoML
🔥 — Я вообще на PyTorch/TensorFlow, мне склерн не нужен
🤔 — Использую всё понемногу, зависит от задачи

Библиотека дата-сайентиста #междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6479
Create:
Last Update:

🔥 Холивар: scikit-learn — мастодонт ML или пора переходить на что-то посвежее?

🎓 С одной стороны — стабильный и понятный scikit-learn:
• простота API,
• огромная документация,
• идеально подходит для обучения и базовых ML-пайплайнов.

💥 Но многие говорят: «Он уже не тянет продакшн»:
• нет GPU,
• нет удобной работы с пайплайнами в стиле TensorFlow/PyTorch,
• нет AutoML по умолчанию.

И начинают смотреть в сторону LightGBM, XGBoost, CatBoost, PyCaret, H2O, или даже Spark ML.

👀 А кто-то вообще считает, что Scikit-learn — это «велосипед прошлого десятилетия».

Делитесь своим стеком — кто чем пользуется в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/es/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Scikit-learn forever: надёжный, понятный, любимый
👍 — Уже давно перешёл на градиентный бустинг и AutoML
🔥 — Я вообще на PyTorch/TensorFlow, мне склерн не нужен
🤔 — Использую всё понемногу, зависит от задачи

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6479

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from es


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA